模型思维(24)--崎岖景观模型
这篇我们将讨论崎岖景观模型,这个模型的目标是通过修改物体的某些属性来达到物体总价值的最大。
适合度景观模型 适合度景观模型假设物种拥有能够促进其适合度的特征或性状,当特征的程度不同时,就和给物种带来不同的适合度。如果用横轴表示性状,用纵轴表示物种的适合度,就可以绘出一张适合度景观的图,其中高海拔点对应高适合度。
假设一只土狼的尾巴有助于土狼在跳跃时保持平衡,而且土狼可以将它作为表示幸福、恐惧或即将发动攻击的信号。我们从横轴的最左侧开始,在那里,尾巴长度为零,这种情况下它不能执行任何一种功能,因此它的适合度为零。随着尾巴长度的增加,维持平衡和传递信号的功能也随之提高。因此,适合度先是随尾巴长度的增加而上升的。 但是,到了某一点上,比如当尾巴长到18英寸时,可能就是有助于土狼保持平衡的最理想长度。如果尾巴变得更长,土狼运动的敏捷度将会下降。不过,更长的尾巴可能还会继续提高它传递信号的价值,因此,长度为20英寸的尾巴可能会产生最大的整体适合度。一旦尾巴的长度超过了20英寸,适合度就会开始下降。结果如图所示,它具有一个单峰。
这种单峰景观被称为富士山景观。在现实世界中,这样的景观是经常出现的。有富士山景观的问题通常是比较容易解决的问题,我们比较容易找到全局最优解,任何一个爬山算法都可以找到这个山峰。
崎岖景观 当我们同时考虑多个属性并且允许一个属性的贡献与其他属性的贡献相互作用时,就会得到一个崎岖景观,也就是具有多个山峰的景观。考虑一个设计沙发的问题,我们必须决定坐垫的厚度和扶手的宽度。我们用沙发在市场上的预期销售额来代表设计的价值,而沙发的销售额与设计的美感相关。如果沙发有厚厚的垫子,那么较宽阔的扶手可能会使沙发更具美感。如果沙发的垫子很薄,那么扶手窄一点会更好。作为扶手宽度和坐垫厚度的函数,预期销售的二维图将具有两个山峰。一个山峰对应于窄扶手、薄垫子的沙发设计;另一个山峰则对应于宽扶手、厚垫子的沙发设计。
变量之间的相互作用,使得我们除了全局最优以外还会有多个局部最优。如果从不同的起点出发,也可能会找到不同的山峰。因此,崎岖性导致了对初始条件的敏感性和路径依赖的可能性。而这些都意味着,景观的崎岖性有助于结果的多样性。崎岖性也意味着出现次优结果的可能性,在崎岖景观中,次优结果表现为局部高峰。
如果我们用梯度启发法,从最左侧开始,那么梯度启发式将定位于局部高峰1上,但它不是最优的。在图中除了全局吸引盆外的其他地方开始,都是很难找到全局最高点。……