模型思维(9)--熵:对不确定性建模
这一篇我们来讨论“熵”的概念。熵可以用来计算一个系统中的失序现象,即混乱程度。简单来说,一个事件的熵越高,其可能带来的惊喜越大,因为其结果是无序,不可预测的。熵是一个用来描述系统状态的函数,在控制论、概率论、天体物理、生命科学中等领域都有应用。这里我们研究其在信息中的定义和应用。
信息熵 熵可以度量与结果概率分布相关的不确定性。我们可以利用抛硬币来进行理解,对于抛硬币的结果,只有正反面两种可能,其概率都是1/2,其不确定性较小,无论怎么猜都有50%的概率回答正确。但如果抛三次硬币,其可能出现的序列就有8种,如果我们想猜对的难度就大大增加。
给定一个概率分布$(p_1, p_2, p_3, p_4 … P_N)$,其信息熵H等于:
$$H(p_1, p_2, p_3, p_4 … P_N) = - \sum ^N_{i=1} p_i log_2(p_i)$$……